a2 United States Patent

Shah

US009311021B1

(0) Patent No.: US 9,311,021 B1
(45) Date of Patent: Apr. 12,2016

(54)

(71)

(72)

(73)

")

@
(22)

(1)

(52)

(58)

METHODS AND SYSTEMS FOR
PERFORMING A READ AHEAD OPERATION
USING AN INTELLIGENT STORAGE
ADAPTER

Applicant: QLOGIC, Corporation, Aliso Viejo,
CA (US)

Inventor: Bhavik Shah, Ahmedabad (IN)

Assignee: QLOGIC, Corporation, Aliso Viejo,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 94 days.

Appl. No.: 14/470,309

Filed: Aug. 27,2014

Int. Cl1.

GO6F 12/00 (2006.01)

GO6F 3/06 (2006.01)

GO6F 12/08 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC GO6F 3/067 (2013.01); GO6F 3/0619

(2013.01); GO6F 3/0665 (2013.01); GOGF
3/0689 (2013.01); GO6F 12/0862 (2013.01);
GO6F 2212/262 (2013.01); GOGF 2212/263
(2013.01); HO4L 67/2847 (2013.01)

Field of Classification Search
CPC ..o GOG6F 12/0862; GO6F 12/067;, GO6F

12/0665; GO6F 12/0689; GOGF 2212/263,;
HO4L 67/2847
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2014/0013027 Al* 1/2014 Jannyavula

Venkata GO6F 12/0866

711/103

2015/0143023 Al* 5/2015 Rostoker GO6F 12/0246
711/103

* cited by examiner

Primary Examiner — Shawn X Gu
(74) Attorney, Agent, or Firm —XKlein, O’Neill &
Singh,LLLP

(57) ABSTRACT

Methods and systems for a read ahead operation are provided.
The method includes maintaining a data structure by an
adapter to track whether data blocks associated with a logical
unit number (LUN) have been written or modified; extracting
a starting logical block address (LBA) for executing a read
request for reading data stored using the LUN; generating a
LBA range for a read ahead operation that is used to predict
data that may be read subsequent to the read request; deter-
mining if blocks associated with the LBA range for the read
ahead operation have been written or modified; only reading
ahead the blocks associated with the L.BA range, when the
blocks have been written to or modified; and temporarily
storing the read ahead data at a cache LUN maintained by the
adapter.

21 Claims, 6 Drawing Sheets

B302

Receive Read I/O request at ISA
B304

l

Extract start LBA and number of blocks
B30s

Generate LBA range for a
“read ahead” operation
B314

A

Compare LBAs in the
generated LBA range with
information stored at a
*block modified bitmap”

8316 B318

Data in
cache?

modified?

Read Complete /O
data —m| request
B310 B312

Issue read request
using LBAs from

| the I/O request

B324

LBAs

/ Issue a read request for Y
300 the entire range of LBAs Complete /0
generated by the read —| request

ahead module B324

B320

U.S. Patent Apr. 12,2016 Sheet 1 of 6 US 9,311,021 B1

Server
102A Memory 100
Pro1cgzsor Application
V4 (107 105A
- -
Other 109 Adapter Storage
— Interface 110 108
—
112
Adapter 114A
Server Mass Storage
102B ﬁl System 120
: Nl 7 R
@ 8 e @
|z
Server 8
102N

Management Console
118 A _

Management Application 100
117

Configuration Data

117A

FIG. 1A

U.S. Patent

US 9,311,021 B1

Apr. 12,2016 Sheet 2 of 6
114A
26A
r_l Microprocessor
— 130
S 131
i External Memory 132 Flash Memory
Storage 138
e| p Receive Module
rotocol
° | Controller 134
I 128 Transmit Module
<o 3 136
N
126B
Host Interface 150 Storage Connector 140
Memory Controller
112 142
141
144A 144N
[[
Connector |e e o] Connector
SSD eece SSD
L148A L148N
Server Chassis 146

FIG. 1B

US 9,311,021 B1

Y.Ll
2IMINIS ele
uoleinbyuon

Ll
uoneoijddy
wswabeuep

8t

ajosuon swebeuepy

Sheet 3 of 6

Apr. 12,2016

oclL
wojshsg
obeicig ssep

lajjoiuo)

ccl

U.S. Patent

ol 'Ol N ‘m ”
2 o3
2 >
A {0[0] @ . 2601
/A : uoneolddy
" o S
“w _%o | oz
= ¢ JonIeS
|
4091 2091 ~ .
> B
5 _w S
o]
*m o} ds0L
<3 uoneoijddy
vy} N
_m _% w gcor
= Z Janieg
09T |
UdLMg
> > | &9
Bl .z |Et
3 . V<ol
h . uonesyddy
.. e S —
_W _W 4 Vol
= EINER

U.S. Patent

Apr. 12,2016 Sheet 4 of 6
Host 102A
Application
105A
l
/O Read Request
208
| I
ISA
114A Processor
130
Read Ahead Module 202
b 4
///// Bitmap 203
200 ‘
Cache
LUN
206

FIG.

2A

US 9,311,021 B1

SAN LUN
204

U.S. Patent Apr. 12,2016 Sheet 5 of 6 US 9,311,021 B1

Start
B212
Receive write I/0 request

l

Extract the number of blocks and the starting logical block address
(LBA) B216

Update bitmap for tracking SAN LUN blocks

|

: l

iﬁ;g:;;gof\; Process write /O
B220 request pooy

N

210

FIG. 2B

U.S. Patent Apr. 12,2016 Sheet 6 of 6 US 9,311,021 B1

Receive Read /O request at ISA
B304

l

Extract start LBA and number of blocks
B306

Generate LBA range for a Data in Read Complete /O
‘read ahead” operation cache? data | request
B314 B310 B312

Compare LBAs in the
generated LBA range with
information stored at a

Issue read request
using L.BAs from
the I/O request

LBAs
modified?

“plock modified bitmap” B324
B316 ——
/ Issue a read request for
the entire range of LBAs Complete 1/0
300 generated by the read —» request
ahead module B324
B320

FIG. 3

US 9,311,021 Bl

1
METHODS AND SYSTEMS FOR
PERFORMING A READ AHEAD OPERATION
USING AN INTELLIGENT STORAGE
ADAPTER

TECHNICAL FIELD

The present disclosure relates to storage systems and more
particularly to intelligent storage adapters used for read ahead
operations.

BACKGROUND

A computer network, often simply referred to as a network,
is a group of interconnected computers and devices that facili-
tates communication among users and allows users to share
resources. Adapters, switches and other devices are typically
used during network communication for reading and writing
data at mass storage devices.

Computing devices (or systems) use mass storage devices
to store data. Data centers are commonly used to store large
amount of data for computing devices. Different storage
options are available for computing devices to store data and
retrieve data. For example, direct-attached storage (DAS),
network attached storage (NAS) and storage area networks
(SANs).

A DAS system typically includes a plurality of storage
drives that are directly attached to a computing device (for
example, a server) and is accessible via a host bus adapter
(HBA). Common protocols used for DAS storage devices are
SCSI (Small Computer Systems Interface), ATA (AT attach-
ment), SATA (Serial ATA), SAS (Serial Attached SCSI) and
others.

NAS is a file level storage that provides access to a plurality
of computing devices. NAS typically uses network file shar-
ing protocols, for example, NFS (Networked File System),
CIFS (Common Internet File System) and others for storing
and managing data at storage devices.

SAN is a dedicated network that provides access to con-
solidated, block level data storage. SANs are primarily used
to make storage devices, such as disk arrays, tape libraries,
and others, accessible to servers so that the devices appear
like locally attached devices to an operating system of a
computing device. A SAN typically has its own network of
storage devices that are generally not accessible through the
local area network by other devices. SANs often utilize a
Fibre Channel fabric topology, an infrastructure specially
designed to handle storage communications. SANs may also
use iSCSI (i.e. mapping SCSI over TCP/IP (Transmission
Control Protocol/Internet Protocol), Fibre Channel over Eth-
ernet (FCoE), FCP (Fibre Channel over SCSI), Hyper SCSI
(i.e. SCSI over Ethernet) and other protocols for storing data
at storage devices.

Continuous efforts are being made to better provide access
to storage systems and improve how data is stored and
retrieved in a network environment having a plurality of com-
puting devices.

BRIEF DESCRIPTION OF THE DRAWINGS

The various present embodiments relating to the manage-
ment of network elements now will be discussed in detail with
an emphasis on highlighting the advantageous features.
These novel and non-obvious embodiments are depicted in
the accompanying drawings, which are for illustrative pur-
poses only. These drawings include the following figures, in
which like numerals indicate like parts:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1A is a functional block diagram of a system, used
according to one embodiment;

FIG. 1B shows an example of an intelligent storage adapter
(ISA);

FIG. 1C shows an example of a configuration for using the
ISAs, according to one embodiment;

FIG. 2A shows an example of a system for a read-ahead
process, according to one embodiment; and

FIGS. 2B-3 show process flows according to various
embodiments of the present disclosure.

DETAILED DESCRIPTION

The following detailed description describes the present
embodiments with reference to the drawings. In the drawings,
reference numbers label elements of the present embodi-
ments. These reference numbers are reproduced below in
connection with the discussion of the corresponding drawing
features.

As a preliminary note, any of the embodiments described
with reference to the figures may be implemented using soft-
ware, firmware, hardware (e.g., fixed logic circuitry), manual
processing, or a combination of these implementations. The
terms “logic,” “module,” “component,” “system,” and “func-
tionality,” as used herein, generally represent software, firm-
ware, hardware, or a combination of these elements. For
instance, in the case of a software implementation, the terms
“logic,” “module,” “component,” “layer” “system,” and
“functionality” represent executable instructions that per-
form specified tasks when executed on a hardware based
processing device or devices (e.g., CPU or CPUs). The pro-
gram code can be stored in one or more non-transitory, com-
puter readable memory devices.

More generally, the illustrated separation of logic, mod-
ules, components, systems, and functionality into distinct
units may reflect an actual physical grouping and allocation
of software, firmware, and/or hardware, or can correspond to
a conceptual allocation of different tasks performed by a
single software program, firmware program, and/or hardware
unit. The illustrated logic, modules, components, systems,
and functionality may be located at a single site (e.g., as
implemented by a processing device), or may be distributed
over a plurality of locations. The term “machine-readable
media” and the like refers to any kind of medium for retaining
information in any form, including various kinds of storage
devices (magnetic, optical, static, etc.).

The embodiments disclosed herein may be implemented as
a computer process (method), a computing system, or as an
article of manufacture, such as a computer program product
or computer-readable media. The computer program product
may be non-transitory, computer storage media, readable by
a computer device, and encoding a computer program of
instructions for executing a computer process. The computer
program product may also be readable by a computing sys-
tem, and encoding a computer program of instructions for
executing a computer process.

In one embodiment, an adapter, for example, a network
device is provided. The adapter includes a storage protocol
controller having a port for interfacing with a storage area
network (SAN) based storage device and another adapter
operating within a cluster is provided. The adapter includes a
processor executing instructions for managing a local storage
device that is configured to operate as a caching device for a
computing device. The adapter operates as a host bus adapter
and a storage controller for managing storage space at the
local storage device and the SAN-based storage device.

29 < 29 <

% <

US 9,311,021 Bl

3

System 100: FIG. 1A is a block diagram of a system 100
configured for use with the present embodiments. System 100
may include a plurality of computing systems 102A-102N
(which may also be referred to as server(s) 102 or host
system(s) 102), each coupled to an adapter, as illustrated
herein by server 102A and adapter 114A (also referred to as
an ISA 114A) that interfaces with other devices and ISAs, as
described below in more detail.

The computing system 102A may include one or more
processors 104, also known as central processing units
(CPUs). Processor 104 may be, or may include, one or more
programmable general-purpose or special-purpose micropro-
cessors, digital signal processors (DSPs), programmable con-
trollers, application specific integrated circuits (ASICs), pro-
grammable logic devices (PLDs), or the like, or a
combination of such hardware devices.

Processor 104 executes machine implemented instructions
(or process steps/blocks) out of a memory 106 and interfaces
with an interconnect 107 that may be referred to as a computer
bus 107. The computer bus 107 may be, for example, a system
bus, a Peripheral Component Interconnect (PCI) bus, PCI-
Express (PCle) bus, a HyperTransport or industry standard
architecture bus, a SCSI bus, a universal serial bus (USB), an
Institute of Electrical and Electronics Engineers (IEEE) stan-
dard 1394 bus (sometimes referred to as “Firewire”), or any
other type of bus.

The computing system 102A may further include a storage
device 108, which may be for example a hard disk (HDD), a
solid-state drive (SSD), a hybrid drive (sometimes referred to
as SSHD), a CD, DVD, or Blu-Ray drive, a non-volatile
memory device (flash or memory stick) or any other storage
device for storing structured or unstructured data. Storage
108 may store operating system program files (or data con-
tainers) and/or application program files, for example, email
applications, database applications, management applica-
tions, and other application files. Some of these files are
stored on storage 108 using an installation program. For
example, the processor 104 may execute computer-execut-
able process steps of an installation program so that the pro-
cessor 14 can properly execute the application program.

In one embodiment, storage device 108 may be a SSD.
SSDs are becoming popular for servers that may need to store
large amounts of data with relatively quick access. ISA 114A
described below in more detail may be used to manage and/or
access storage device 108, according to one embodiment.

Memory 106 also interfaces with the computer bus 107 to
provide the processor 104 with access to memory storage.
Memory 106 may include random access main memory
(RAM). When executing stored computer-executable process
steps from storage 108, the processor 104 may store and
execute the process steps out of memory 106. Read only
memory (ROM, not shown) may also be used to store invari-
ant instruction sequences, such as start-up instruction
sequences or basic input/output system (BIOS) sequences for
operation of a keyboard (not shown).

In an embodiment, processor 104 may execute an applica-
tion 105A for performing certain functions. For example,
application 105A may be a database application, a virtual
machine executed in a virtual environment (provided by
VMware Corporation, Microsoft Corporation or any other
entity), an electronic email application (for example,
Microsoft Exchange), or any other application type. Applica-
tion 105A may issue read and write requests that are pro-
cessed by ISA 114A, as described below in more detail.
Application 105A may also be referred to as a “client.”

The computing system 102A also includes other devices
and interfaces 109, which may include a display device inter-

5

10

15

20

25

30

35

40

45

55

60

65

4

face, a keyboard interface, a pointing device interface and
others. The details of these components are not germane to the
inventive embodiments.

ISA 114A may be configured to handle both network and
storage traffic while interfacing with other elements. In one
embodiment, as described below in detail, ISA 114A may be
configured to provide the functionality of a host bus adapter
(HBA) by providing connectivity to SAN-based storage
arrays, as well as, present logical storage from a local storage
device connected to the ISA. Various network and storage
protocols may be used to handle network and storage traffic,
for example, Ethernet, Fibre Channel, Fibre Channel over
Ethernet (FCoE), Internet over Small Computer System
Interface (iISCSI), and others. Some of the common protocols
are described below.

Ethernet is a common network protocol used for network
communication. The original Ethernet bus or star topology
was developed for local area networks (LAN) to transfer data
at 10 Mbps (mega bits per second). Newer Ethernet standards
(for example, Fast Ethernet (100 Base-T) and Gigabit Ether-
net) support data transfer rates that are greater than 1 gigabit
(GB). The various embodiments described herein may use
Ethernet (which includes 100 Base-T and/or Gigabit Ether-
net) as the network protocol. However, the adaptive embodi-
ments disclosed herein are not limited to any particular pro-
tocol, as long as the functional goals are met by an existing or
new network protocol.

Fibre Channel (or FC) is a common storage protocol used
in SANs. Fibre Channel is a set of American National Stan-
dards Institute (ANSI) standards that provide a serial trans-
mission protocol for storage and network protocols such as
HIPPI, SCSI, IP, ATM and others. Fibre Channel supports
three different topologies: point-to-point, arbitrated loop and
fabric. The point-to-point topology attaches two devices
directly. The arbitrated loop topology attaches devices in a
loop. The fabric topology attaches host systems directly (via
HBAs) to a fabric, which are then connected to multiple
devices. The Fibre Channel fabric topology allows several
media types to be interconnected. Fibre Channel fabric
devices include a node port or “N_Port” that manages Fabric
connections. The N_port establishes a connection to a Fabric
element (e.g., a switch) having a fabric port or F_port.

A new and upcoming standard, called Fibre Channel over
Ethernet (FCOE) has been developed to handle both Ethernet
and Fibre Channel traffic in a storage area network (SAN).
This functionality would allow Fibre Channel to leverage
high speed, for example, 10 Gigabit Ethernet networks while
preserving the Fibre Channel protocol. In one embodiment,
ISA 114A can be configured to operate as a FCOE adapter.
Those of ordinary skill in the art will appreciate, however, that
the present embodiments are not limited to any particular
protocol.

iSCSI is an IP-based storage networking standard for link-
ing data storage facilities. By carrying SCSI commands over
IP networks, iSCSI is used to facilitate data transfers over
intranets and to manage storage over long distances. iISCSI
can be used to transmit data over local area networks (LANs),
wide area networks (WANSs), or the Internet and can enable
location-independent data storage and retrieval. The protocol
allows clients to send SCSI commands (referred to as com-
mand or (control) data blocks (CDBs) to SCSI storage
devices (may be referred to as targets) on remote servers.
iSCSI is a SAN-based protocol, allowing organizations to
consolidate storage into data center storage arrays while pro-
viding hosts (such as database and web servers) with the
illusion of locally attached disks. Unlike traditional Fibre
Channel, which uses special-purpose cabling, iSCSI can be

US 9,311,021 Bl

5

run over long distances using existing network infrastructure.
In one embodiment, ISA 114A may operate as an initiator as
well as a target for responding to input/output (I/O or 10)
requests for reading and writing information at storage
devices.

Storage space at a storage device (local or SAN-based) is
typically presented to application 105A as a logical entity
referred to as a logical unit number (LUN). Each LUN is
uniquely identified by an identifier (LUN ID) and is associ-
ated with physical storage space. A LUN has a size associated
with it that may indicate the amount of storage space that is
made available to a computing system and a drive letter that
may be used to access the LUN.

A LUN is typically divided into logical block addresses
(LBAs) that are used by application 105A to read and write
data to storage locations. The LBAs are mapped with actual
physical storage to read and write data. A LUN used by an
application may be referred to as a data LUN. A LUN that is
accessible viaa SAN connection may be referred to asa SAN
LUN. A LUN at alocal storage device managed by ISA 114A
may be referred to as “cache” LUN. A cache LUN may be
used to cache data stored at a SAN LUN or another data LUN.
The cache LUN is managed by ISA 114A and may not be
visible to application 105A.

Referring back to FIG. 1A, computing system 102 uses an
adapter interface 110 to communicate with ISA 114A via a
link 112. In one embodiment, link 112 may be a PCI-Express
link or any other interconnect type. The adaptive embodi-
ments disclosed herein are not limited to any particular link
type.

ISA 114A may communicate and interface with a mass
storage system 120 via a SAN 116 that may include one or
more switch(es) (which also may be referred to as fabric
switches). The mass storage system 120 may include a plu-
rality of storage devices 124 A-124N. Storage space at storage
devices 124 A-124N may be presented as SAN LUNSs to appli-
cation 105A via SAN 116. Controller 122 of mass storage
system 120 may be used to manage storage devices 124A-
124N. In one embodiment, controller 122 may include a
processor, an ISA 114A and other similar components.

System 100 may also include a management console 118,
used according to one embodiment. Management console
118 may be a computer system similar to computing system
102A described above in detail. Management console 118
executes a management application 117 that may be used to
configure storage space as logical structures (for example, as
LUNs) that are presented to computing systems 102A-102N
for storing information or as cache LUNs at local storage for
caching information stored at SAN LUNSs. Permissions asso-
ciated with a LUN may also be configured using management
application 117. The permissions indicate which entities may
be allowed to access a LUN to read and/or write information.
Management application 117 may store LUN attributes and
permissions in a configuration data structure 117A at a stor-
age location.

In one embodiment, ISA 114 A is provided that can provide
transparent data caching at SSDs while efficiently synchro-
nizing the SSD data with SAN-based storage devices. The
ISA enables management of data stored at the SSDs. The ISA
also enables the SSDs to be shared as SAN storage allowing
other servers 102B-102N to access data residing at SSDs in
server 102A. ISA 114 A may configure a LUN from the local
storage 108 and present the LUN to servers 102A-102N,
allowing the local storage 108 to be shared by other Servers
102B-102N.

In another embodiment, ISA 114A provides traditional
SAN connectivity to computing systems 102A and to the

10

15

20

25

30

35

40

45

50

55

60

65

6

SSDs at each computing system. The SSDs may be managed
as a storage pool that may be configured to operate as a cache
pool to cache read/write data for SAN LUNSs presented to the
computing systems. SAN LUNs when configured may be
tagged with an attribute that allows caching at the local SSDs
for read and/or write caching.

FIG. 1B shows an example of ISA 114A that includes a
storage protocol controller 128 (shown as “external storage
protocol controller”) with ports 126 A and 126B. The storage
protocol controller may be a Fibre Channel controller (or
application specific integrated circuit (ASIC)) used for inter-
facing with Fibre Channel based storage devices via ports
126A/126B. In such an embodiment, ports 126A/126B
include logic and circuitry for sending and receiving Fibre
Channel frames. Fibre Channel is simply shown as an
example and the various embodiments disclosed herein are
not limited to any particular storage/network protocol. Thus
ports 126A-126B are not limited to just Fibre Channel ports.
Furthermore, although only two ports 126A and 126B are
shown as an example, the adaptive embodiments disclosed
herein are not limited to any particular number of ports.

Storage protocol controller 128 may operate as a host bus
adapter for managing 1/O requests for SAN-based storage.
Storage protocol controller 128 is configured to process 1/0
requests for reading data from SAN-based storage (124 A-
124N) and writing data to SAN-based storage. Thus storage
protocol controller 128 is used to take advantage of existing
SAN infrastructure, while providing access to SSDs for com-
puting systems 102A-102N.

In one embodiment, storage protocol controller 128
includes a processor (not shown) for executing the Fibre
Channel stack having layers, FCO -FC4. FCO is defined by the
Fibre Channel specification as the physical layer, which
includes cables (fiber optics, twisted-pair), connectors and
others. The FC1 layer is defined as the data link layer. This
layer implements the 8B/10B encoding and decoding of sig-
nals. The FC2 layer is defined as the network layer. This layer
defines the main Fibre Channel framing, addressing, and
control protocols. The FC3 layer is an auxiliary layer that
provides common services like encryption or RAID related.
The FC4 layer is the protocol mapping layer where other
protocols, such as SCSI are encapsulated into an information
unit for delivery to FC2 and transmission across a Fibre
Channel network. This layer provides flexibility to Fibre
Channel as a networking technology compatible with other
technologies.

ISA 114A also includes a host interface 150 that interfaces
with processor 104 via link 112. The structure of host inter-
face 150 will depend on the type of connection/interconnect
used to communicate with processor 104. For example, if a
PCI-Express link is used to communicate with processor 104,
then host interface 150 includes logic and circuitry for receiv-
ing and sending PCI-Express packets/information.

ISA 114A further includes a system-on-chip (SOC) 131
that includes a processor 130 having access to an adapter
memory (which may also be referred to as local memory)
132. Processor 130 may be one or more programmable gen-
eral-purpose or special-purpose microprocessors, digital sig-
nal processors (DSPs), programmable controllers, applica-
tion specific integrated circuits (ASICs), reduced instruction
set computer (RISC), programmable logic devices (PLDs), or
the like, or a combination of such hardware devices. Memory
132 may be used to store firmware instructions and various
data structures for ISA 114A for controlling overall ISA
114 A operations. Memory 132 may also store instructions for
implementing the various embodiments described herein.

US 9,311,021 Bl

7

SOC 131 may also include a receive module 134 and a
transmit module 136. The receive module 134 may be used to
store packets that are received via ports 126 A/126B, while
transmit module 136 may be used to store information that is
transmitted via ports 126 A/126B or to local SSDs that are
described below. Receive module 134 and/or transmit module
136 may be separate modules and may include more than one
component for processing received information or informa-
tion that is transmitted.

ISA 114A may also include a non-volatile memory 138
(shown as flash memory) for storing parameters/instructions
that may be used by processor 130 for executing the instruc-
tions described below in detail. ISA 114A also includes a
storage connector 140 that interfaces with another card 141
(may also be referred to as a daughter card 141), according to
one embodiment. In one embodiment, the storage connector
may be a PCI-Express connector, PCI connector or any other
connector type based on the interconnect used by SOC 131 to
interface with the SSDs. The daughter card 141 includes a
memory controller 142 that interfaces with a plurality of
connectors’ 144 A-144N. The plurality of connectors’ 144 A-
144N are used to plug in, for example, SSDs 148A-148N
(similar to storage 108). In this embodiment, SSDs 148A-
148N are included within a server chassis 146. In one
embodiment, connectors’ 144A-144N may be SATA connec-
tors for receiving SSDs 148A-148N. In another embodiment,
connectors’ 144A-144N may be SAS connectors. In other
embodiments, any or all of the SSDs 148 may be replaced
with other storage options as described herein with reference
to storage 108.

ISA 114 A has SAN connectivity because of ports 126 A-
126B, similar to a host bus adapter, as mentioned above. The
storage protocol controller 128 allows SAN storage-based
processing. Unlike conventional HBAs, ISA 114A also
includes a storage connector 140 that provides local storage
solutions via SSDs 148A-148N.

In another embodiment, ISA 114A is configured such that
a daughter card has the SSDs 148A-148N on the card itself
rather than on the server chassis 146. In another embodiment,
ISA 114A is configured such that the memory controller 142
is on the same card as the other components of ISA 114A. The
SSDs 148A-148N are also on the same card connected via
one or more storage connectors.

FIG.1C shows a system 100A where each [SA 114A-114C
in servers’ 102A-102C are coupled to a fabric switch 160,
according to one embodiment. ISA 114B and 114C are simi-
lar to ISA 114A described above. Fabric switch 160 that is a
part of SAN 116 (shown in FIG. 1A) includes a plurality of
ports 160A-160E. Ports 160A-160C are coupled to ISA
114A-114C ports, respectively, while port 160D is coupled to
controller 122 of the mass storage system 120. Management
console 118 may be coupled to port 160E for configuring
various components of system 100A.

Management console 118 may be used to configure LUNs
156A-156C that are presented to application 105A executed
by server 102A, application 105B executed by server 102B,
and application 105C executed by server 102C for storing
information. The LUNs may be based on storage located at
SAN-based storage 120 or at a local SSD 148A-148N.

The LUNs 156 A-156C may also be configured to operate
as alocal LUN. In this configuration, the LUN may be used as
a “boot” LUN. The LUN may be used by the host computing
system to which it is presented. One or more ISAs may
present the boot LUN to any of the servers that are served by
a cluster of ISAs.

The LUNs 156A-156C may also be accessible by one or
more servers via switch 160. In this example, a DAS-based

30

40

45

65

8
SSD becomes accessible as SAN storage, while the DAS-
based storage is still managed by an application 105A (for
example, a database application).

In one embodiment, ISAs 114A-114C operate within a
cluster. The cluster is configured using management applica-
tion 117. The cluster is identified by a unique identifier.
Within the cluster, a specific ISA may operate as a LUN
owner or a “cache owner.” The cache owner adapter interfaces
with the SAN LUN for executing read and write operations.
As an example, adapter 114A may be the cache owner for
LUN 156A that is presented to application 105B. In this
configuration, ISA 114B becomes the client ISA or the client
adapter.

Inone embodiment, a SAN LUN may be cached using SSD
148 managed by ISA 114 A. Storage space at SSD 148 may be
used to operate as a “Read Ahead” cache for the SAN LUN.
This means that when a request to read data stored at a SAN
LUN is received, then a read ahead process predicts what
other LBAs may be read next. This allows the system to
retrieve the data before it is requested. The “read ahead” data
is then stored at the local cache that is based on SSD 148.

Conventional read ahead techniques have shortcomings.
For example, when the read ahead process predicts certain
blocks and those blocks were never written, then attempting
to read unwritten blocks can be a waste of computing
resources because a read ahead request for unwritten blocks
will only return zeroes. The embodiments disclosed herein
use an efficient technique to track what blocks may have been
written and only read ahead the written blocks, as described
below in detail.

FIG. 2A shows an example of system 200 using a read
ahead module 202 executed by processor 130 of ISA 114B,
according to one embodiment. The read ahead module 202
may stored as processor executable memory by ISA 114A.
The read ahead module 202 is used for reading ahead blocks
of data from SAN LUN 204 into the cached LUN 206 that is
based on storage space at SSDs 148 and managed by ISA
114A. The SAN LUN 204 is based on a SAN based storage
device 124.

Application 105A executed by host system 102 A generates
an 1/O request 208 that is provided to or obtained by ISA
114A. Based on the I/O READ request, the read ahead mod-
ule 202 predicts a block address range (LBA range) that the
read ahead module 202 believes application 105A will need
next. This prediction may be based on various factors, for
example, the read ahead process will generate READs for an
adjacent LBA range to the LBA range specified in the [/O read
request. For example, ifa READ /O request is for 4KB data,
then the read ahead module 202 generates a request for a total
ot 32KB of data covering data blocks that are adjacent to the
requested data blocks. This helps applications which have
sequential 10 patterns such as background database mainte-
nance of a Microsoft Exchange server.

The read ahead module 202 uses a bitmap (or data struc-
ture) 203 to filter or reduce the predicted block address range,
as described below in detail. Bitmap 203 tracks blocks that are
written for a LUN (for example, SAN LUN 204). As an
example, bitmap 203 may store the following information:
SAN LUN identifier that identifies the SAN LUN, block
number that identifies the logical block address and a bit value
indicating if the block has been modified i.e. written or not.

FIG. 2B shows a process 210 for handling write I/O
requests, according to one embodiment. The process starts in
block B212, when host 102A and an ISA (for example, 114A)
are operational. In block B214, when ISA 114A receives an
1/O request to write data either from application 105A or

US 9,311,021 Bl

9

another peer ISA operating within a cluster. The write request
may be to write to SAN LUN 204 (FIG. 2A).

In block B216, ISA 114A extracts the number of blocks
that need to be written and the starting LBA for the write
operation. The LBA in this instance is for the SAN LUN.

In block B218, ISA 114A determines if the blocks in the
extracted range have previously been modified for the LUN.
If the blocks have not been modified, then the bitmap 203 is
updated. As described above, bitmap 203 tracks the blocks for
the SAN LUN as they are written. Thereafter, in block B220,
the bitmap information may be stored persistently ata storage
device. When the blocks that are in use for the LUN are freed,
then bitmap 204 is updated to reflect that blocks are no longer
in the “modified state”. The write I/O request is also pro-
cessed in block B222. If the write I/O request is to be cached
locally, then it is saved at a local cache, otherwise saved at the
SAN LUN 204.

FIG. 3 shows a process 300 for handling a read request and
using the read ahead module 202, according to one embodi-
ment. The process begins in block B302, when application
105A at host system 102A is initialized and operational. ISA
114A is also operational.

In block B304, a read /O request is received at ISA 114A.
The read request includes a starting LBA for the SAN LUN
and a number of blocks that have to be read. In block B306,
the starting LBA and the number of blocks are extracted by
ISA 114A.

In block B308, the ISA 114 A determines if the data for the
address range inthe /O request is at cache 206. Ifyes, then the
data is read from the cache in block B310 and the I/O request
is completed in block B312.

If the data is not in the cache 206, then in block B314, the
read ahead module 202 predicts a LBA range that is greater
than the LBA range in the 1/O request for a read ahead opera-
tion. As described above, the read ahead address range is
predicted based on adjacency.

In block B316, the ISA 114B compares the additional
block addresses with the block addresses at bitmap 203 to
determine if any data has been written at the blocks for the
read ahead process.

In block B318, the read ahead module 202 determines if
additional LBAs have been modified i.e. if data has been
written at the additional block addresses. If yes, then a read
request for the entire predicted range is generated to read
ahead the data from the predicted LBA range. Thereafter the
process ends in block B324, when the I/O request is com-
pleted.

If the additional LBAs were not modified, then in block
B322, aread request is issued using only the LBA range in the
1/0O request. Thus, the read ahead process does not attempt
read ahead blocks that have not been written or modified. The
1/0O request is then completed in block B324, as described
above.

The processes described above are efficient for reading
ahead cached information. The processes read ahead data
when data has actually been written or modified at the LBA
ranges that are adjacent to an LBA range specified in a read
1/0O request.

Although the present disclosure has been described with
reference to specific embodiments, these embodiments are
illustrative only and not limiting. For example, although the
description above has been described with respect to an ISA,
any other device may be configured to perform the foregoing
function. Thus the term adapter and device are interchange-
able. Many other applications and embodiments of the
present disclosure will be apparent in light of this disclosure
and the following claims. References throughout this speci-

20

30

40

45

55

10

fication to “one embodiment” or “an embodiment” means
that a particular feature, structure or characteristic described
in connection with the embodiment is included in at least one
embodiment of the present disclosure. Therefore, it is empha-
sized and should be appreciated that two or more references to
“an embodiment” or “one embodiment” or “an alternative
embodiment” in various portions of this specification are not
necessarily all referring to the same embodiment. Further-
more, the particular features, structures or characteristics
being referred to may be combined as suitable in one or more
embodiments of the disclosure, as will be recognized by those
of ordinary skill in the art.

What is claimed is:

1. A machine implemented method, comprising:

maintaining a data structure by an adapter to track whether

datablocks associated with a logical unit number (LUN)
have been written or modified;
extracting a starting logical block address (LBA) for
executing a read request for reading data stored using the
LUN;

generating a LBA range for a read ahead operation that is
used to predict data that may be read subsequent to the
read request;
determining if blocks associated with the LBA range for
the read ahead operation have been written or modified;

only reading ahead the blocks associated with the LBA
range, when the blocks have been written to or modified;
and

temporarily storing read ahead data at a cache LUN main-

tained by the adapter.

2. The method of claim 1, wherein the LUN is based on
storage space at a storage device that is accessible via a
storage area network (SAN).

3. The method of claim 1, wherein the cache LUN is based
on storage space at a local solid state storage device that is
managed by the adapter.

4. The method of claim 1, wherein the adapter maintains a
bitmap for tracking blocks associated with the LBA range that
may have been written or modified.

5. The method of claim 1, wherein the blocks associated
with the LBA range are not read if the blocks have not been
written to or modified.

6. The method of claim 1, wherein L.LBA range for the read
ahead operation is greater than an LBA range of the read
request.

7. The method of claim 1, wherein the entire L.BA range is
read ahead if any block within the LBA range has been written
to or modified.

8. A non-transitory, machine readable storage medium
storing executable instructions, which when executed by a
machine, causes the machine to perform a method, the
method comprising:

maintaining a data structure by an adapter to track whether

datablocks associated with a logical unit number (LUN)
have been written or modified;
extracting a starting logical block address (LBA) for
executing a read request for reading data stored using the
LUN;

generating a LBA range for a read ahead operation that is
used to predict data that may be read subsequent to the
read request;
determining if blocks associated with the LBA range for
the read ahead operation have been written or modified;

only reading ahead the blocks associated with the LBA
range, when the blocks have been written to or modified;
and

US 9,311,021 Bl

11

temporarily storing read ahead data at a cache LUN main-

tained by the adapter.

9. The storage medium of claim 8, wherein the LUN is
based on storage space at a storage device that is accessible
via a storage area network (SAN).

10. The storage medium of claim 8, wherein the cache
LUN is based on storage space at a local solid state storage
device that is managed by the adapter.

11. The storage medium of claim 8, wherein the adapter
maintains a bitmap for tracking blocks associated with the
LBA range that may have been written or modified.

12. The storage medium of claim 8, wherein the blocks
associated with the LBA range are not read if the blocks have
not been written to or modified.

13. The storage medium of claim 8, wherein L BA range for
the read ahead operation is greater than an L.LBA range of the
read request.

14. The storage medium of claim 8, wherein the entire LBA
range is read ahead if any block within the LBA range has
been written to or modified.

15. A system comprising:

a processor executing instructions out of a memory for:

maintaining a data structure by an adapter to track whether

data blocks associated with a logical unit number (LUN)
have been written or modified;

extracting a starting logical block address (LBA) for

executing a read request for reading data stored using the
LUN;

10

15

20

25

12

generating a LBA range for a read ahead operation that is
used to predict data that may be read subsequent to the
read request;
determining if blocks associated with the LBA range for
the read ahead operation have been written or modified;

only reading ahead the blocks associated with the LBA
range, when the blocks have been written to or modified;
and

temporarily storing read ahead data at a cache LUN main-

tained by the adapter.

16. The system of claim 14, wherein the LUN is based on
storage space at a storage device that is accessible via a
storage area network (SAN).

17. The system of claim 14, wherein the cache LUN is
based on storage space at alocal solid state storage device that
is managed by the adapter.

18. The system of claim 14, wherein the adapter maintains
a bitmap for tracking blocks associated with the LBA range
that may have been written or modified.

19. The system of claim 14, wherein the blocks associated
with the LBA range are not read if the blocks have not been
written to or modified.

20. The system of claim 14, wherein LBA range for the
read ahead operation is greater than an L.BA range of the read
request.

21. The system of claim 14, wherein the entire LBA range
is read ahead if any block within the LBA range has been
written to or modified.

#* #* #* #* #*

